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Identification of Concentrated Damages in Euler-Bernoulli
Beams under Static Loads

G. Buda1 and S. Caddemi2

Abstract: An identification procedure of concentrated damages in Euler-Bernoulli beams under static loads is presented in this work. The
direct analysis problem is solved first by modeling concentrated damages as Dirac’s delta distributions in the flexural stiffness. Closed-
form solutions for both statically determinate and indeterminate beams are presented in terms of damage intensities and positions. On this
basis, for the inverse damage identification problem, a nonquadratic optimization procedure is proposed. The presented procedure relies
on the minimization of an error function measuring the error between the analytical model response and experimental data. The procedure
allows to recognize “a posteriori” some sufficient conditions for the uniqueness of the solution of the damage identification problem. The
influence of the instrumental noise on the identified parameters is also explored.

DOI: XXXX

CE Database subject headings: Damage; Beams; Static loads; Parameters; Stiffness; Structural elements.

Introduction

In the literature of the last decades the problem of damage iden-
tification has been the object of several studies in view of its
applicability to those cases in which a simple visual inspection of
the damaged structural element is not allowed. The appearance of
damage implies a loss of the structural stiffness inducing variation
of both static and dynamic response. Response measurements,
hence, represent crucial data for damage identification. Experi-
mental data can be obtained by nondestructive tests that represent
the starting point of damage identification procedures. Single non-
destructive tests in dynamic regime provide, in general, a large
amount of information, and furthermore, since they are easily
repeatable, encourage a wide research work devoted to the study
of dynamic identification procedures �Vestroni and Capecchi
1996, 2000; Sinha et al. 2002; Patil and Maiti 2003�. However, in
cases of simple structural systems, such as straight beams subject
to damage, static tests are easily executable and provide addi-
tional information to dynamic identification without any introduc-
tion of uncertainties due to masses and damping ratios. In the
literature there are in fact studies, although less numerous, pro-
posing identification procedures based on measurements by static
tests aiming at identification of both physical and geometrical
parameters of structural systems, and also discretized by means of
finite elements �Banan et al. 1994a,b; Hjelmstad and Shin 1997;

Sanayei and Scampoli 1991�.
An optimization procedure for damage identification in

straight beams by means of bending moment measurements by
static tests has been recently proposed �Di Paola and Bilello
2004�. In the latter procedure the damage has been modeled as a
distortion superimposed to the undamaged beam. Since the dis-
tortion is function of the stress distribution in the damage beam, a
different treatment is required by statically determinate and inde-
terminate beams.

In this study the identification problem of concentrated dam-
ages, such as cracks in Euler-Bernoulli beams by means of static
response measurements, is dealt with. Since no crack closure phe-
nomenon is considered, a linear behavior of the damaged beam is
assumed.

First, the direct analysis problem under static loads is treated
by considering the concentrated damage as a singularity of the
flexural stiffness, without introducing any restriction concerning
the damage intensity. The above-mentioned singularity is mod-
eled by means of the well known Dirac’s delta distribution. The
treated case requires ad hoc integration rules of distributions re-
cently discussed �Biondi and Caddemi 2005�. The proposed ap-
proach for the direct analysis problem leads to an explicit re-
sponse in terms of intensity and position of the damage.

The inverse identification problem is here studied by means of
an optimization procedure of a function measuring the error of the
model response with respect to experimental measurements. The
error function, on the basis of the approach adopted for the direct
analysis problem, is formulated as an explicit nonquadratic func-
tion of the parameters to be identified. Application of the pro-
posed optimization procedure permits important indications con-
cerning the position of measurements and the types of load
conditions for the execution of static tests. Finally, sensitivity of
the identification procedure to instrumental noise affecting the
experimental data is also studied by modeling the noise as a ran-
dom variable and adopting suitable probabilistic indices of the
identified parameters.

1Dept. of Environmental and Civil Engineering, Univ. of Catania,
Catania, Italy.

2Dept. of Environmental and Civil Engineering, Univ. of Catania,
Catania, Italy �corresponding author�. E-mail: scaddemi@dica.unict.it

Note. Associate Editor: Bojan B. Guzina. Discussion open until
January 1, 2008. Separate discussions must be submitted for individual
papers. To extend the closing date by one month, a written request must
be filed with the ASCE Managing Editor. The manuscript for this paper
was submitted for review and possible publication on August 5, 2004;
approved on September 13, 2006. This paper is part of the Journal of
Engineering Mechanics, Vol. 133, No. 8, August 1, 2007. ©ASCE, ISSN
0733-9399/2007/8-1–XXXX/$25.00.
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Concentrated Damage Model for Euler-Bernoulli
Beams

The presence of damage in a continuous body determines a loss
of some physical parameters of the material to be held in an
appropriate constitutive model. In the case of damage caused by
the presence of a crack it is well known that, besides the stress
concentration occurring at the crack tip, there is a zone, adjacent
to the crack, denoted as “ineffective” in view of its low stress
level.

If a straight beam is subjected to a concentrated damage, such
as a crack or a saw cut at a certain cross section, the presence of
the ineffective zone in the crack vicinity can be accounted for by
a loss of the flexural stiffness in the Euler-Bernoulli beam theory.
In this study, since the final aim concerns the detection of the
crack on the basis of suitably designed static tests, phenomena
such as closure or propagation of the crack will not be considered;
hence, the beam will show a linear behavior. In the literature,
several models of flexural stiffness variation over a finite leg of
the beam in the vicinity of the crack have been proposed �Ani-
fantis and Dimarogonas 1993; Chondros et al. 1998; Christides
and Barr 1984; Ostachowicz and Krawczuk 1991; Paipetis and
Dimarogonas 1986; Sinha et al. 2002�. A comparison of these
models has been reported by Cerri and Vestroni �2003�. Whatever
variation law is adopted for the flexural stiffness over the finite
interval of the beam, an equivalence criterion allows modeling of
the considered concentrated damage as an internal hinge located
at the same cross section endowed with rotational spring whose
“equivalent” stiffness is dependent on the damage intensity. In
this study, for the case of a uniform rectangular cross-section
beam, the following expression for the stiffness of the equivalent
rotational spring is applied �Bilello 2001�

keq =
EI0

h

0.9�� − 1�2

��2 − ��
�1�

where E=Young’s modulus of the material; I0= inertia moment of
the undamaged section; h=cross section height; and �=d /h, sub-
jected to inequalities 0���1, is the ratio between the crack
depth d and the cross section height h. Henceforth, the � param-
eter will be addressed as “damage intensity parameter.”

The adoption of Eq. �1� for the stiffness of the equivalent
rotational spring, proposed in the case of the rectangular cross
section with a crack normal to the beam axis �Bilello 2001�, does
not represent a limitation for the present study. In fact, for differ-
ent cross sections, different equivalent stiffness models can also
be adopted in the damage identification procedure proposed in
this paper. Furthermore, different types of damage �such as cracks
not normal to the beam axis or even diffused� can also be treated
provided they can be modeled by means of an equivalent rota-
tional spring whose stiffness should replace that adopted in
Eq. �1�.

The Euler-Bernoulli beam model, adopted in this study in
order to perform the damage identification procedure, under static
loads and for the general case of variable inertia moment I�x�, is
governed by the following equations

T��x� = q�x� , �2a�

M��x� = T�x� �2b�

��x� = − u��x� , �2c�

��x� = ���x� �2d�

��x� = M�x�/EI�x� �2e�

where q�x�=external vertical load; T�x� and M�x�=shear force
and the bending moment, respectively; u�x�, ��x�, and ��x� are
the deflection, slope, and curvature functions, respectively; and
the prime denotes differentiation with respect to the spatial coor-
dinate x, spanning from 0 to the length L of the beam.

The differential Eqs. �2a�–�2d� represent the equilibrium and
the compatibility equations, while the algebraic Eq. �2e� is the
constitutive equation relating curvature and bending moment
through the spatial variable flexural stiffness EI�x�.

Combining the equilibrium, the compatibility and the consti-
tutive equations yields to the following fourth-order differential
governing equation in terms of deflection only

�EI�x�u��x��� = q�x� �3�

where the spatial variability of the flexural stiffness has to be
accounted for.

In this study, Eq. �3�, holding over the entire domain 0�x
�L, will be adopted in order to describe an Euler-Bernoulli beam
showing a slope discontinuity at x0 equivalent to the presence of
a concentrated damage. However, with this aim, a constant inertia
moment I0 of the cross section along the beam span, showing a
singularity at x0, is considered as follows

I�x� = I0�1 − ���x − x0�� �4�

where the singularity is represented by a Dirac’s delta distribution
��x−x0�, centred at x0, multiplied by a dimensional parameter �.

The model introduced by means of Eq. �4� indicates that the
inertia moment is a distribution; hence, according to the distribu-
tion theory �Guelfand and Chilov 1972; Hoskins 1979; Lighthill
1958�, Eq. �4� is a synthetic notation implying that I�x� is not
defined at x0 but its properties are defined by integration after
multiplication by test functions. In this sense, according to Eq. �4�
the inertia moment does not take negative values at x0, but inte-
gration operation used in this work can be performed by means of
integration rules of Dirac’s delta. However, even though Eq. �4� is
considered as representative of a function, rather than a distribu-
tion, in this section it is proved that the parameter � does not
assume values greater or equal to 1, hence the inertia moment
does not take negative values.

A deeper interpretation of the inertia moment model adopted
in Eq. �4� is not straightforward and requires a careful insight into
the distribution theory presented in a recent work �Biondi and
Caddemi 2005�.

Substitution of Eq. �4� into the fourth-order governing differ-
ential Eq. �3� leads to

�EI0�1 − ���x − x0��u��x��� = q�x� �5�

Double integration of Eq. �5�, in view of the compatibility Eqs.
�2c� and �2d�, leads to the following equation

��x� = − u��x� = −
q�2��x� + c1 + c2x

EI0
− �u��x���x − x0� �6�

where q�k� indicates a primitive of order k of the external load
function q�x�; and c1 and c2 are integration constants. It has to be
noted that the primitive of order two, q�2�, of the load function
q�x� is usually a continuous function, even in those cases showing
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singularities of the external load such as abrupt variations of the
external load �modeled as unit step functions� or concentrated
loads �modeled as Dirac’s deltas� �Yavari et al. 2000; Falsone
2002�.

The loss of continuity of q�2��x� is due only to the presence of
concentrated external moments �modeled as doublet distribu-
tions�. However, in the latter case the discontinuities are never
assumed to be coincident with the singularity of the inertia mo-
ment at x0.

The curvature function ��x� expressed under the form of Eq.
�6� does not explicitly justify the inertia moment model adopted
in Eq. �4�, in view of the presence of the term u��x���x−x0� on the
right-hand side. However, multiplying both sides of Eq. �6� by
��x−x0� the following expression is obtained

u��x���x − x0� =
q�2��x� + c1 + c2x

EI0
��x − x0�

+ �u��x���x − x0���x − x0� �7�

The first term on the right-hand side of Eq. �7� can be considered
as a standard Dirac’s delta distribution in view of the continuity of
q�2��x� at x0, previously discussed. The second term contains the
product of two Dirac’s deltas both centred at x0. In order to give
Eq. �7� some mathematical meaning, the product definition of two
Dirac’s deltas proposed by Bagarello �1995, 2002� is adopted
here. Bagarello indicates that the product of two Dirac’s deltas
both centred at x0 can be reduced to a single Dirac’s delta multi-
plied by a constant A

��x − x0���x − x0� = A��x − x0� �8�

A set of values for the quantity A, defined by Bagarello �1995�,
for which Eq. �8� holds, is reported in the Appendix.

Since this study, besides the adopted distribution theory, aims
at capturing physical aspect of an engineering problem, the con-
stant A is required to be dimensional, and as shown later, consis-
tent with the dimension of the Dirac’s delta.

Replacing Eq. �8� in Eq. �7� leads to

u��x���x − x0� =
1

1 − �A

q�2��x� + c1 + c2x

EI0
��x − x0� �9�

Substitution of Eq. �9� in Eq. �6� provides the following explicit
expression for the curvature ��x�

��x� = − u��x� = −
q�2��x� + c1 + c2x

EI0
�1 +

�

1 − �A
��x − x0��

�10�

The importance of Eq. �10� must be highlighted in view of its
capability of justifying the inertia moment model adopted in Eq.
�4�. In fact, according to Eq. �10� the curvature ��x� is given as
superimposition of a Dirac’s delta distribution, centred at x0, to
the function �q�2��x�+c1+c2x� /EI0 definitely continuous at x0. As
a consequence, the slope function ��x�, in view of Eq. �2d�,
shows a discontinuity at x0. The latter circumstance indicates that
the choice of Eq. �4� for the inertia moment represents a beam
with an internal hinge with rotational spring at the abscissa x0.

Double integration of Eq. �10� provides the following expres-
sions for the slope function ��x� and the deflection function u�x�
�Biondi and Caddemi 2005�

��x� = − u��x�

= − c3 −
c1

EI0
�x +

�

1 − �A
U�x − x0�� +

−
c2

2EI0
�x2 + 2

�

1 − �A
x0U�x − x0�� −

q�2��x�
EI0

−
�

1 − �A

q�2��x0�
EI0

U�x − x0� �11�

u�x� = c4 + c3x +
c1

2EI0
�x2 + 2

�

1 − �A
�x − x0�U�x − x0��

+
c2

6EI0
�x3 + 6

�

1 − �A
x0�x − x0�U�x − x0�� +

q�4��x�
EI0

+
�

1 − �A

q�2��x0�
EI0

�x − x0�U�x − x0� �12�

where U�x−x0� indicates the well-known unit step distribution,
also known in the literature as Heaviside’s function, representing
the formal primitive of the Dirac’s delta, showing discontinuity at
x0, defined as U�x−x0�=0 for x�x0, U�x−x0�=1 for x�x0. Fur-
thermore, constants c1, c2, c3, and c4 appearing in Eqs. �11� and
�12� can be obtained by means of enforcement of boundary con-
ditions. In particular, mechanical conditions require the knowl-
edge of the bending moment M�x� and the shear force T�x� func-
tions.

The bending moment M�x� is obtained by means of Eq. �2e�
and Eq. �10�, after simple algebra and accounting for the product
of two Dirac’s deltas, as follows

M�x� = EI�x���x� = − �c1 + c2x + q�2��x�� �13�

Differentiation of Eq. �13�, in view of Eq. �2b�, leads to the fol-
lowing expression for the shear force T�x�

T�x� = − c2 + q�1��x� �14�

In the case of statically determinate beams, the influence of the
discontinuity on the response by means of the parameter � is
expected through the constants c3 and c4 only, once the boundary
conditions are enforced, since it is well known that in this case
M�x� and T�x�, where c1 and c2 appear, should not depend on the
physical characteristics of the beam.

The slope function ��x� provided by Eq. �11� shows at x0 the
following discontinuity 	��x0�

	��x0� = ��x0
+� − ��x0

−� = −
1

EI0

�

1 − �A
�c1 + c2x0 + q�2��x0��

�15�

where x0
+ and x0

−=abscissae on the right and on the left of x0,
respectively. The discontinuity 	��x0� provided by Eq. �15� rep-
resents the relative rotation between the cross sections at x0

+ and
x0

−, a consequence of the inertia moment model adopted in Eq. �4�.
Comparison of Eq. �13� and Eq. �15� leads to

	��x0� =
�

1 − �A

M�x0�
EI0

�16�

Eq. �16� provides the relationship between the relative rotation
	��x0� and the bending moment M�x0� at x0, suggesting the in-
terpretation of inertia moment model of Eq. �4� as an internal
hinge at x0 endowed with rotational spring stiffness K�, given as
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K� =
1 − �A

�
EI0 �17�

Dimensional analysis of Eq. �17� requires the A constant to be
measured as the inverse of a length, the parameter � as a length,
and as a consequence the Dirac’s delta, appearing in Eq. �4� is a
distribution to be measured as the inverse of a length.

The stiffness K� of the rotational spring at x0 given by Eq. �17�
is dependent on the parameter � introduced in the inertia moment
model of Eq. �4�. The stiffness K� is here adopted to reproduce
the stiffness Keq of the rotational spring at x0, given by Eq. �1�,
equivalent to the damage intensity �. Hence, for a given rota-
tional spring stiffness Keq, the related value of the parameter �
has to be obtained by Eq. �17� as �=EI0 / �Keq+AEI0� for a value
of the quantity A among those proposed by Bagarello �1995�.

However, a direct relationship between the damage intensity
parameter � and the parameter � can be obtained by equating
Eqs. �1� and �17�, leading to the following expression for the
parameter �

� =
2� − �2

�0.9/h − A��2 − �0.9/h − A�2� + �0.9/h�
�18�

Eq. �18�, for a value of the quantity A among those proposed by
Bagarello �1995�, provides the parameter �, to be adopted in the
model with singularity given by Eq. �4� as function of the damage
intensity parameter �.

According to Eq. �18�, for damage intensity parameter �=0
�i.e., no damage�, it is also �=0, and, in view of Eq. �17�, the
rotational spring stiffness K�=
. Under the latter circumstance,
any relative rotation is forbidden at x0 and the case of constant
inertia moment I0 of the entire beam is recovered.

On the other hand, for damage intensity parameter �=1 �i.e.,
the damage affects the entire height of the cross section�, the
parameter � obtained by Eq. �18� attains the value 1/A leading to
a rotational spring stiffness equal to zero.

The expression in Eq. �18�, dependent on the height h of the
cross section, is a monotonic function in the range of 0���1,
plotted in Fig. 1, where for the quantity A the first value among
those proposed by Bagarello �1995� has been chosen �evaluated
as A=2.013 cm−1, as shown in the appendix, for indices j=2 and

m=2 in Bagarello’s paper�. Hence, for significant values of dam-
age intensity factor 0���1, the parameter � is such that 0
���1/A, where 1/A�1.

It has to be pointed out that curves plotted in Fig. 1 have been
obtained by expressing the height h in centimeters. Since Eq. �18�
is dependent on the adopted unit of measure, the value of � can
be different even for a fixed value of �. However, the value of �,
provided by Eq. �18� and replaced in Eq. �17� will provide the
correct value of stiffness K� equal to the rotational spring stiffness
Keq in Eq. �1�, equivalent to the concentrated damage.

The model presented in this section for a sole singularity of the
inertia moment leads to the explicit solution, reported in Eq. �12�,
as function of the intensity and position damage parameters. Eq.
�12�, solution of the direct analysis problem, will be adopted in
the next section for the inverse problem aiming at damage iden-
tification.

However, since the presence of multiple damage in a beam can
occur, generalization of the explicit solution to the case of mul-
tiple singularities is also presented in this section.

The model of inertia moment I�x� with a singularity proposed
in Eq. �4� can be extended to the presence of n singularities as
follows

I�x� = I0�1 − 	
i=1

n

�i��x − x0i�� �19�

where �i�i=1, . . . ,n� parameters are the intensities of the singu-
larities present at abscissae x0i�i=1, . . . ,n�. The model adopted in
Eq. �19�, in light of Eq. �17�, corresponds to the presence of n
internal hinges at x0i endowed with rotational spring stiffnesses
K�i=EI0�1−�iA� /�i.

Integration of the governing equation of Euler-Bernoulli beam
with inertia moment given by Eq. �19� can be conducted accord-
ing to a procedure analogous to that presented for a sole singu-
larity, leading to the following expression for the deflection func-
tion

u�x� = c4 + c3x + c1�x2 + 2	
i=1

n
�i

1 − �iA
�x − x0i�U�x − x0i�� + c2�x3

+ 6	
i=1

n
�i

1 − �iA
x0i�x − x0i�U�x − x0i�� +

q�4��x�
EI0

+ 	
i=1

n
�i

1 − �iA

q�2��x0i�
EI0

�x − x0i�U�x − x0i� �20�

Eq. �20� represents the solution of the direct analysis problem for
the case of multiple damages if the parameters �i�i=1, . . . ,n� are
strictly related to n damages with intensities �i according to the
relationship given by Eq. �18�. Eq. �20� will be adopted in the
following section to perform a solution procedure of the damage
identification inverse problem.

Optimization Procedure for Damage Identification

The aim of this section is identification of the intensity and posi-
tion of concentrated damages in a beam, if measurements of the
deflection at selected cross sections are given by static tests. In
particular, it is supposed that deflection measurements at nm cross
sections are given by the execution of static tests for nlc different
load conditions.

Fig. 1. Variation of the parameter �, adopted in the inertia moment
model, with the damage intensity parameter � for different values of
the cross section height h
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The identification procedure adopted is based on the explicit
solution in terms of deflection function of the direct analysis
problem proposed earlier.

Damage identification is achieved by means of the following
minimization problem

min
�i,x0i


 ��i,x0i� = 	
l=1

nlc

	
m=1

nm

�u��i,x0i,xm,l� − uE�xm,l��2

subject to

0 � �i � 1/A, 0 � x0i � L�i = 1, . . . ,n� �21�

Therefore, given a beam with n damaged cross sections, with
unknown intensity and position of damages, the optimization
problem represented by Eq. �21� provides the sought values of �i

and x0i�i=1, . . . ,n� as those that minimize the function �. The
error function ���i ,x0i� is defined in Eq. �21� as the square of the
difference between deflection of the Euler-Bernoulli damaged
beam model u��i ,x0i ,x�, presented in Eq. �20�, and the experi-
mental deflection measurements uE�xm,l� at nm different cross sec-
tions for nlc different load conditions indicated as xm,l

�m=1, . . . ,nm ; l=1, . . . ,nlc�. The problem reported in Eq. �21� is
not a quadratic optimization problem in view of the nonlinear
dependence of the deflection function given in Eq. �20� on inten-
sities �i and positions x0i of damages. Additional nonlinearities
are hidden in the c1, c2, c3, and c4 constants to be evaluated in Eq.
�20� by means of enforcement of boundary conditions.

In this study, rather than exploring aspects regarding solution
algorithms of Eq. �21�, the solution procedure proposed in the
literature for identification procedures in dynamic field �Vestroni
and Capecchi 1996, 2000; Cerri and Vestroni 2000�, and recently
recast for static identification problems �Di Paola and Bilello
2004�, is adopted.

The mentioned solution procedure is efficient for the search of
the solution of Eq. �21� with particular regard to the position
variables x0i appearing as arguments of the unit step functions in
Eq. �20�. The solution procedure is performed according to the
following two phases: �1� minimization of the error function �,
with respect to the �i parameters only, for fixed values of damage

positions x0i, leading to the reduced error function �̃�x0i�=min�i

���i ,x0i�, where each value of �̃�x0i� will be coupled to the op-
timal values of �i; and �2� minimization of the reduced error

function �̃�x0i� with respect to the positions x0i.
The solution of the inverse identification problem is provided

by minx0i
�̃�x0i� together with its coupled values �i.

It is known �Banan et al. 1994a; Hjelmstad and Shin 1997;
Vestroni and Capecchi 2000� that the number of measurements
required for the solution of the inverse identification problem
must be greater or equal to the number of parameters to be iden-
tified; hence the following inequality must be satisfied

nlc � nm � 2n �22�

Eq. �22� is understood as a necessary condition for the solution of
the damage identification problem. To the authors’ knowledge no
sufficient conditions have been formulated neither regarding the
position of the measurements nor the position and distribution of
the external loads.

In what follows, by making use of the above-mentioned opti-
mization procedure, attention will be devoted to the analysis of
the results of single and double damage identification problem.
Aim of the study is testing the proposed identification procedure,
rather than the adopted damaged beam model, and providing, in

addition to Eq. �22�, indications concerning measurement and
concentrated load positions for a correct formulation of the iden-
tification problem. To this aim, the given deflection measurements
uE�xm,l� appearing in Eq. �21� are generated by means of the ex-
plicit solution in Eq. �20� of the adopted model; subsequently, the
influence of experimental errors on the proposed procedure is
investigated by means of superimposition of a random variable to
the generated deflection measurements. Performance of the pro-
posed identification procedure on the basis of acquisition of de-
flection measurements by real laboratory static tests will be sub-
ject of future work.

Identification of a Single Concentrated Damage

In this section a steel beam with Young’s modulus E=210 GPa,
length L=100 cm, and square cross section with height h=5 cm
under different boundary conditions is considered. A single con-
centrated damage due to a crack with depth d=2.5 cm, at the
cross section x0=40 cm, is object of identification by means of
the proposed procedure.

The ratio between the crack depth d and the cross-section
height h, named damage intensity parameter �, takes the value
�=0.5. From now on, for the constant A the first value among
those proposed by Bagarello �1995� A=2.013 cm−1 will be
adopted. For �=0.5 and A=2.013 cm−1, Eq. �18� provides �
=0.4824 cm.

The first damage identification case is solved on the basis of
the knowledge of two deflection measurements �nm=2� at x1 and
x2 here obtained by means of the explicit solution provided by Eq.
�20� for a single load condition �nlc=1� given by a concentrated
load P=2 kN at abscissa xP. It has to be noted that the choice of
two measurements �nm=2� and a single load condition �nlc=1� is
in accordance with the necessary condition in Eq. �22� required
for the solution of the inverse identification problem of single
damage �n=1�. However, since the existence of sufficient condi-
tions regarding the positions x1 and x2 of deflection measurements
has not been proved in the literature, in this section correct
choices of measurement positions leading to a unique solution of
the identification problem will be studied.

In the case of a pinned-pinned beam two deflection measure-
ments at x1=30 cm and x2=70 cm bridging the crack to be iden-
tified are considered first. Equation �12�, for the load P=2 kN
concentrated at xP=60 cm, provides the following deflection mea-
surements uE�x1�=u1=0.0362 cm at x1=30 cm and uE�x2�=u2

=0.0362 cm at x2=70 cm. The identification procedure presented
previously has been applied to identify the position x0 and the
parameter � of the concentrated damage. In Figs. 2�a and b� the

reduced error function P̃�x0� and the error function P�� ,x0� with
its contour lines are plotted. The reduced error function in Fig.
2�a� takes the zero value, as minimum value, at x0=40 cm, and it
is coupled to the optimal value of �=0.4824 cm. The results are
confirmed by the error function P�� ,x0� in Fig. 2�b�, where the
contour lines, in the range 0���1/A=0.4968 cm and 0�x0

�L=100 cm show the unique minimum for x0=40 cm and �
=0.4824 cm, which is the exact solution.

The same identification problem has been also solved by con-
sidering two deflection measurements of two cross sections both
lying on the right hand side of the crack to be identified. In par-
ticular, the identification procedure has been performed given the
following deflection measurements uE�x1�=u1=0.0360 cm at x1
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=70 cm and uE�x2�=u2=0.0135 cm at x2=90 cm obtained by
means of Eq. �20�.

The reduced error function P̃�x0�, plotted in Fig. 3�a�, attains
the zero value in the region approximately between 10 and 70 cm;
hence a unique solution of the damage identification problem can-
not be recognized. In fact, the contour lines of the error function
P�� ,x0� plotted in Fig. 3�b� show the presence of an entire valley
where the absolute minimum in reached.

Further identification problems on the pinned-pinned beam,
based on different couples of deflection measurements, although
not reported here, have been performed and confirmed the
uniqueness of the solution for couples of measurements bridging
the crack to be identified.

In order to study whether the positions of two measurements
bridging the crack can be considered sufficient for the uniqueness

of the solution of the identification problem, a clamped-pinned
beam, a clamped-clamped beam, and a clamped-free beam have
been also considered.

For a clamped-pinned beam under the concentrated load P at
xp=80 cm, if two measurements at x1=30 cm and x2=70 cm are

available, the reduced error function P̃�x0� and error function
P�� ,x0�, plotted in Fig. 4, shows the existence of a unique mini-
mum correspondent to the exact solution.

For a clamped-clamped beam under the concentrated load P at
xp=50 cm, it is shown in Fig. 5 that once again, a unique mini-
mum, correspondent to the exact solution, is reached by the error
function for two measurements bridging the crack.

The case of a clamped-free beam shows different peculiarities
since, for two measurements bridging the crack x1=30 cm and
x2=70 cm and a concentrated load at the free end, the error func-
tion in Fig. 6 shows several peaks defining an entire region where
the exact solution cannot be uniquely identified. In this case dif-

Fig. 2. Pinned-pinned beam with a single damage and two deflection

measurements bridging the crack: �a� reduced error function �̃�x0�;
�b� error function log ��� ,x0� with its contour lines

Fig. 3. Pinned-pinned beam with a single damage and two deflection
measurements on one side of the crack: �a� reduced error function

�̃�x0�; �b� error function log ��� ,x0� with its contour lines
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ferent measurement positions have been also considered in order
to find a unique and exact solution. In Fig. 7 the error function for
two measurements both on the left of the crack, x1=10 cm and
x2=30 cm, still shows the existence of infinite solutions of the
identification problem. Finally, the case of two measurements
taken on the right of the crack at x1=60 cm and x2=90 cm, shown
in Fig. 8, leads to a unique minimum of the error function coin-
cident with the exact solution.

It can be noted that measurements have to be taken one at the
left and one at the right of the crack for the cases of clamped-
clamped, clamped-pinned, and pinned-pinned beams, while for
clamped free beams, couples of measurements have to be taken
on the side of the crack toward the free end, provided that the
load position allows the crack to be open.

If real experimental tests are executed to identify a single
crack whose position is not a priori known, it is suggested to

choose two deflection measurements at x1 and x2 close to the left
end and to the right end, respectively, for cases of pinned-pinned,
clamped-pinned, and clamped-clamped beams in such a way that
the damage will most likely lie between x1 and x2. In the case of
a cantilever beam, it is instead suggested to choose measurements
next to the free edge of the beam. The second damage identifica-
tion case is solved with one deflection measurement �nm=1� only
at x1=70 cm. In order to enforce the necessary condition given by
Eq. �22� at least two load conditions �nlc=2� have to be ac-
counted for.

In this case suitable choices of the load conditions to be
adopted in experimental tests are studied in order to obtain
uniqueness of the solution of the damage identification problem.
The case of a pinned-pinned beam under a concentrated load type
P=2 kN is presented. In particular, two concentrated load condi-
tions at xP1=30 cm and xP2=60 cm, bridging the crack, are con-

sidered first. The reduced error function P̃�x0� plotted in Fig. 9�a�

Fig. 4. Clamped-pinned beam with a single damage and two deflec-
tion measurements bridging the crack: �a� reduced error function

�̃�x0�; �b� error function log ��� ,x0� with its contour lines

Fig. 5. Clamped-clamped beam with a single damage and two de-
flection measurements bridging the crack: �a� reduced error function

�̃�x0�; �b� error function log ��� ,x0� with its contour lines
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shows a zero value as absolute minimum at x0=40 cm. The error
function P��x0� plotted in Fig. 9�b� shows a unique minimum for
x0=40 cm and �=0.4824 cm, correspondent to the exact solution
of the damage identification problem.

Then, two concentrated load conditions, both on the right hand
side of the crack, at xP1=50 cm and xP2=60 cm, are considered.
The damage identification procedure in this case provides the

reduced error function P̃�x0� plotted in Fig. 10�a�, not showing a
unique minimum, but on the contrary, attaining the zero value in
the entire region approximately between 10 and 50 cm. The error
function P�� ,x0� plotted in Fig. 10�b�, in fact, shows a valley of
absolute minima including the exact solution.

The latter case indicates that concentrated load conditions re-
quire loads to be applied on opposite sides of the crack in order to

provide uniqueness of the solution. The latter circumstance ex-
plains the reason why in Fig. 7 in the original work by Di Paola
and Bilello �2004�, after the introduction of noise in deflection
measurements, the highest mean error has been found for a load
sequence of concentrated loads equally spaced from the left hand
x=0 of the beam, the damage being located at x=0.75L.

Identification of Two Concentrated Damages

The extension of the solution of the direct analysis problem to the
case of multiple damaged beam, presented in Eq. �20� in terms of
deflection function, allows the treatment of the identification

Fig. 6. Clamped-free beam with a single damage and two deflection

measurements bridging the crack: �a� reduced error function �̃�x0�;
�b� error function log ��� ,x0� with its contour lines

Fig. 7. Clamped-free beam with a single damage and two deflection
measurements on the left of the crack: �a� reduced error function

�̃�x0�; �b� error function log ��� ,x0� with its contour lines
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problem of two cracks as presented in this section. The same steel
beam, treated in the previous section, is here considered under the
pinned-pinned boundary conditions; however, two cracks n=2
concentrated at sections x01=25 cm and x02=70 cm are supposed.
Both cracks reach the same depth d1=d2=2.2 cm leading to the
damage intensity parameters �1=�2=0.5. According to the pre-
sented damage model, the parameters to be identified, besides the
positions x01 and x02, are �1=�2=0.4824 cm.

In this double damage identification problem a single concen-
trated load condition �nlc=1� is considered as follows: P=2 kN
at xP=50 cm. The necessary condition provided by Eq. �22� indi-
cates that at least nm=4 deflection measurements are needed. In
particular, two couples of measurements, each bridging a crack,
are generated by means of Eq. �20� at the following cross sec-
tions: x1=10 cm, x2=30 cm, x3=60 cm, and x4=85 cm �such that
x1�x01�x2�x3�x02�x4�.

The first step of the identification procedure presented previ-

ously has led to a reduced error function �̃�x01 ,x02�, plotted in

Fig. 11. Two minima can be recognized in Fig. 11 �since crack 1
can be exchanged with crack 2�, both correspondent to the exact
solution of the identification problem x01=25 cm and �1

=0.4824 cm, and x02=70 cm and �2=0.4824 cm. It is important
to note that any other type of choice of four deflection measure-
ments, besides the one above described, would lead to indetermi-
nate solution of the problem. In fact, if the two cracks are con-

Fig. 8. Clamped-free beam with a single damage and two deflection
measurements on the right of the crack: �a� reduced error function

�̃�x0�; �b� error function log ��� ,x0� with its contour lines

Fig. 9. Pinned-pinned beam with a single damage, one deflection
measurement, and two concentrated load conditions bridging the

crack: �a� reduced error function �̃�x0�; �b� error function
log ��� ,x0� with its contour lines

564

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

581

582

583
584
585
586
587
588

JOURNAL OF ENGINEERING MECHANICS © ASCE / AUGUST 2007 / 9



centrated at x01=40 cm and x02=70 cm and the measurements are
chosen at x1=10, x2=30, x3=60, x4=85 cm �such that x1�x2

�x01�x3�x02�x4�, the results shown in Fig. 12, for this case,
do not allow a unique identification of the damage parameters.

The nature of the damage identification problem implies that
the number of cracks is not known a priori; hence, in what fol-
lows, the performance of the identification procedure with the
double damage model when only one crack appears is explored.

For the beam presented in the previous section a single crack
at x0=70 cm and an intensity parameter �=0.4824 cm; to be
identified, is considered under pinned-pinned boundary condi-
tions. The error function ���i ,x0i��i=1,2� is obtained by means
of a double damage model on the basis of a single concentrated
load condition P=2 kN at xP=50 cm and four deflection mea-
surements at x1=10, x2=30, x3=60, and x4=85 cm. The reduced

error function �̃�x01 ,x02� obtained by means of minimization with
respect to �1, �2 is plotted in Fig. 13.

Inspection of Fig. 13 reveals that the reduced error function
does not show a unique minimum; on the contrary, the zero value
is reached over an entire valley. However, it has to be noted, first,
that all the minima belong to the straight line x01=70 cm �and the
symmetric line x02=70 cm�, indicating that one damage is surely
located at 70 cm �which is the exact solution�. Furthermore, for
each couple x01, x02, where the minimum is attained, the associ-
ated intensity parameters �1 and �2, although both different from
the exact solution �=0.4824 cm, verify the following relationship

�1

1 − �1A
+

�2

1 − �2A
=

�

1 − �A
�23�

which indicates that by adding the identified stiffnesses �1 / �1
−�1A� and �2 / �1−�2A� the stiffness � / �1−�A� equivalent to the
exact damage is recovered.

It can be concluded that the damage is unique, is located at
x0=70 cm, and the exact identified intensity parameter �
=0.4824 cm can be obtained by solving Eq. �23� with respect to
�, as follows

Fig. 10. Pinned-pinned beam with a single damage, one deflection
measurement, and two concentrated load conditions on one side of

crack: �a� reduced error function �̃�x0�; �b� error function
log ��� ,x0� with its contour lines

Fig. 11. Pinned-pinned beam with double damage and two couples
of deflection measurements each bridging a crack: reduced error

function log �̃�x01,x02� with its contour lines

589

590
591
592
593
594
595
596

597

598
599
600
601
602
603

604
605
606
607
608
609
610
611
612
613
614

615

616
617
618
619
620
621
622

10 / JOURNAL OF ENGINEERING MECHANICS © ASCE / AUGUST 2007



� = � �1

1 − �1A
+

�2

1 − �2A
�
�1 +

�1

1 − �1A
+

�2

1 − �2A
�

�24�

where �1 and �2 take the values associated to those couples x01

and x02, where the reduced error function attains the minimum.
Finally, in order to further test the proposed identification pro-

cedure when the number of cracks is not a priori known, the case
of beams in presence of two cracks while the identification model
is limited to a single crack is also discussed. It is obviously ex-
pected that the identification procedure does not identify the exact
solution since the single crack model cannot reproduce the actual
damage configuration.

Two actual damages with intensities �1=�2=0.4824 cm, con-
centrated at x01=40 and x02=60 cm, are supposed in the previ-
ously considered pinned-pinned beam. A damage model with a
single crack is adopted; hence, two deflection measurements and
a single load condition fulfil the necessary condition �Eq. �22�� to
identify a single crack.

Since it has been shown that a single crack must lie between
the two measurements to have a unique solution, displacements
are measured at the left and at the right of the actual cracks
�x1=30 cm�x01�x02�x2=70 cm�. The result of the identifica-
tion procedure is reported in Fig. 14 where the reduced error
function shows a unique minimum at x0=50 cm, which is an in-
termediate position between the two damages; furthermore, the
error function, also showing a unique minimum, indicates an in-

tensity parameter �=0.4877 cm greater than the value of the ac-
tual intensities �1=�2=0.4824 cm.

Sensitivity to Experimental Noise

In the previous section the capability of the proposed identifica-
tion procedure of providing exact solutions on the basis of exact
measurements has been tested. However, if experimental mea-
surements are given by real tests they are expected to be affected
by noise that is the source of error influencing the results of the
identification procedure. Hence in this section the sensitivity of
the proposed identification procedure to the variability of the ex-
perimental data is explored. The noise will be considered as a
random variable, and the identified damage parameters, provided
by the proposed identification procedure, have to be considered as
random variables too. For this study experimental deflection mea-
surements uE�x� are simulated as follows:

uE�xm,l� = u��i,x0i,xm,l��1 + Rm,l�

�i = 1, . . . ,n;m = 1, . . . ,nm;l = 1, . . . ,nlc� �25�

where u��i ,x0i ,xm,l�=exact deflection values at xm,l abscissae,
provided by the solution in Eq. �20� of the adopted damaged
beam model, with �i and x0i being the actual damage parameters;
Rm,l=uniformly distributed random variables independent of each
other with zero mean and given amplitude range. For each sample

Fig. 12. Pinned-pinned beam with double damage and only one
deflection measurements between the two cracks: reduced error

function log �̃�x01,x02� with its contour lines Fig. 13. Pinned-pinned beam with a single damage and four

deflection measurements: reduced error function log �̃�x01,x02�
evaluated by means of the model with two cracks
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of generated random variables Rm,l
�k� , a sample uE�k��xm,l� of experi-

mental data will be obtained by means of Eq. �25� and the iden-
tification procedure will provide a sample of perturbed identified
damage parameters �i

�k�, x0i
�k�. Generating ns samples and perform-

ing ns identification procedures represent the well known Monte
Carlo simulation. Sensitivity of the solution of the identification
procedure to experimental measurement noise is studied by
means of the normalized average mean error �AME� and the nor-

malized average standard deviation �ASD� defined as follows
�Banan et al. 1994b�

AME =
1

2n	
i=1

n � �E��i
�k�� − �i�
�i

+
�E�x0i

�k�� − x0i�
x0i

� �26a�

ASD =
1

2n	
i=1

n �
�i
�k�

�i
+


x0i
�k�

x0i

� �26b�

where E��i
�k�� and E�x0i

�k�� indicate the mean; and 
�
i
�k� and 
x

0i
�k�

=standard deviation of the identified intensity and position dam-
age parameters, respectively. It has to be noted that the error
parameters adopted in Eqs. �26� are normalized with respect to
the actual damage parameters, intensity and position ��i and x0i�;
hence, absolute errors do not count equally for different damage
parameters. However, error parameters adopted to evaluate the
influence of experimental noise have been chosen as in Eq. �26�
in order to provide results consistent with those presented by
Banan et al. �1994b� and Di Paola and Bilello �2004�. Further-
more, normalized errors expressed in percentage provide an error
measure to be compared with the experimental noise amplitude
introduced in the experimental deflection measurements. How-
ever, in case absolute errors on damage parameters are needed,
denominators appearing in Eq. �26� should be left out.

The beam with single damage described previously under the
pinned-pinned boundary condition and reported in Fig. 2�a� is
here considered by assuming that experimental deflection mea-
surements are taken at x1=30 cm and x2=70 cm and simulated
according to Eq. �25�. Two levels of proportional noise are ana-
lyzed by considering the amplitude ranges ±5 and ±10% for the
random variables Rm,l. The proposed identification procedure has
been performed by reproducing experimental tests for eight dif-
ferent load conditions �nlc=8�. The load conditions have been
obtained by means of a concentrated load P=2 kN at eight dif-
ferent positions xPi, and denoted as load conditions number k=1
through to k=8 as reported in Table 1.

For each single load condition �k=1, . . . ,8�, with noise ampli-
tude 5%, Monte Carlo simulation of the damage identification
procedure for an increasing number of samples up to ns=2,000
has been performed, and results in terms of AME and ASD are
reported in Figs. 15�a and b�. Inspection of Figs. 15�a and b�
reveals that, for each single load condition, the normalized aver-
age mean error AME and standard deviation ASD of the identifi-
cation procedure solution tend to establish to fixed values as the
number of samples increases, as also indicated by Banan et al.
�1994a� and called “bias error.” However, the above-mentioned
fixed values of AME and ASD reached for an increasing number
of samples, and denoted AME and ASD in what follows, depend
on the position of the concentrated load. Inspection of Figs. 15�a
and b� reveals that, in order to recognize the correct noise influ-
ence on the identified parameters and compare the sensitivity to
the noise for different load conditions, a number of samples
greater than 1,500 should be considered. As a consequence, for
the limit quantities AME and ASD, the values obtained by Monte
Carlo simulation for 2,000 samples have been assumed and plot-
ted in Figs. 16�a and b�.

Fig. 14. Pinned-pinned beam with double damage and two deflection

measurements: reduced error function log �̃�x01,x02� evaluated by
means of the model with a single crack

Table 1. Concentrated Load Condition Numeration with respect to Position xp.

Concentrated load condition number k 3 5 7 Crack 8 4 6 1 2

Position of the concentrated load xP �cm� 10 35 38 40 42 45 50 60 80
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Analysis of Figs. 16�a and b� shows that load conditions de-
noted as k=1 and k=2 �corresponding to concentrated loads at
xp1

=60 cm and xp2
=80 cm, hence distant from the crack� lead to

mean error AME and dispersion of data ASD higher than those
produced by other concentrated loads. In any case, for any load
condition, it can be noted that the average mean error AME of the
identified damage parameters is always ��0.8% � less than the
assigned level �5%� of the experimental noise. Hence, the pro-
posed identification procedure tends to reduce the error affecting
the input data. Furthermore, the proposed identification procedure
based on the minimization problem in Eq. �21� allows to take into
account all the displacement data obtained by static tests for dif-
ferent load conditions; in fact, summation in Eq. �21� is extended
up to nlc load conditions. It is expected that the more load con-
ditions that are considered in the optimization problem, the better
is the reduction of the noise effect on the identified parameters. In
particular, the proposed identification procedure has been per-
formed by introducing in Eq. �21� displacement data for an in-
creasing number of load conditions according to a prescribed se-
quence given by k, in Table 1, increasing from 1 to 8. The results
of the Monte Carlo simulation in terms of AME and ASD for an

increasing number of load conditions in the summation in Eq.
�21� are reported in Figs. 17�a and b� for noise levels 5% and
10%. The results reported in Figs. 17�a and b� show that adding
load conditions, according to the prescribed load sequence, pro-
vides a substantial decrement of the noise effect both in terms of
AME and ASD.

Conclusions

In this work the problem of the concentrated damage identifica-
tion in Euler-Bernoulli beams has been addressed. A linear behav-
ior of the damaged beam has been considered and no restrictions
concerning the damage intensity has been introduced. First the
direct analysis problem under the influence of static loads has
been solved in closed form by modeling concentrated damages as
Dirac’s delta distributions in the flexural stiffness. On the basis of
the proposed direct analysis solution the inverse identification
problem has been tackled by means of an optimization procedure.
The proposed model led to an explicit nonquadratic function to be
minimized and formulated in explicit form in terms of position
and intensity parameters to be identified, measuring the error be-

Fig. 15. �a� Average mean error; �b� average standard deviation for
eight different loading conditions k=1, . . . ,8, listed in Table 1,
against the number of samples in the Monte Carlo simulation for
noise amplitude 5%

Fig. 16. �a� Average; �b� average standard deviation reached, at 2000
samples, by the eight loading conditions k=1, . . . ,8, listed in Table 1,
with noise amplitude 5%
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tween the analytical model response and experimental data.
The presented approach allows an easy solution of the damage

identification problem. It has to be remarked that the explicit error
function to be minimized hold for both statically determinate and
indeterminate beams without any additional computational effort.
The difference between the two cases lies in the expression of the
constants dependent on the boundary conditions only.

A few cases regarding beams with different boundary condi-
tions with single and double concentrated damages have been
solved. In particular, different positions of deflection measure-
ments and concentrated loads have been analyzed and some suf-
ficient conditions, dependent on the boundary conditions, for the
uniqueness of the solution have been “a posteriori” recognized.

Analysis of the results provided useful suggestions concerning
the position of the deflection measurers to be adopted in real
experimental tests. The presented procedure provides also encour-
aging results in those cases in which the number of concentrated
damages is not known “a priori.”

Finally, the performance of the proposed procedure, where the
experimental data are affected by instrumental noise, has been
analyzed. The noise has been modeled by means of a random
variable and the average mean error and average standard devia-
tion of the identified parameters have been studied. It has been

shown that, under different load conditions, the instrumental noise
affects, to a different extent, the mean error and the dispersion of
the identified parameters. Increasing the number of load condi-
tions in the optimization problem provides the average mean error
and standard deviation of the identified parameters approaching
the zero value.
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Appendix. Definition of the Product of Two Dirac’s
Deltas

In the classical theory of distributions, although the product of
distributions is well defined, the proposed definitions cannot be
extended to the product of two Dirac’s deltas centered at the same
point.

In the literature some theories address the problem of defini-
tion of new classes of multiplication of distributions to be applied
to two or more Dirac’s deltas centered at the same point. Usually,
theories attempting a definition of the product of distributions rely
on: �1� regularization of the distributions in order to obtain con-
tinuous functions able to return to the original distributions by
means of a limiting procedure; �2� multiplication, in the sense of
distributions, of the regularized distributions; �3� definition of the
product of two or more distributions by means of a limiting pro-
cedure applied to the multiplication of the regularized distribu-
tions as defined in step 2. The theory proposed by Bremermann
and Durand �1961� is based on a regularization of distributions by
means of the so called analytic continuation of a distribution. The
Colombeau’s theory �Colombeau 1984� follows a different ap-
proach to define a regularized version of a distribution called the
sequential completion. The latter makes use of the so-called
�-sequences, and the regularized distribution is defined as the
convolution of the original distribution with the �-sequences. It
has to be remarked that the previously mentioned theories for
regularized distributions do not allow the definition of the product
of Dirac’s deltas.

In this appendix a different approach, proposed by Bagarello
�1995, 2002�, which makes use of both previously mentioned
definitions of regularized distributions in order to introduce a new
multiplication for distributions is reported. The multiplication in-
troduced by Bagarello applies only to distributions for which both
analytic continuation, dependent on an � parameter, and convolu-
tion with �-sequences, dependent on a � parameter, exist, and it
has been proved to apply to Dirac’s delta and its derivatives. In
particular, according to Bagarello �1995�, a regularized distribu-
tion �red of a Dirac’s delta is considered first by means of an
analytic continuation as follows

�red�x,
1

n�� =
1

�n�

1

x2 +
1

n2�

�27�

and then another regularized distribution �n
��� is considered by

means of the following �-sequence

Fig. 17. �a� Average mean error; �b� average standard deviation for
load sequence 1-2-3-4-5-6-7-8
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�n
����x� = n���n�x� �28�

for any fixed n and where ��x� is a suitable chosen function with
support �−1,1� and such that �−1

1 ��x�dx=1.
According to the multiplication for distributions proposed by

Bagarello �1995� the product of two Dirac’s deltas, making use of
the regularized distributions reported in Eqs. �27� and �28�, de-
pending on the choice of the parameters � and �, is defined as
follows

���x���x���,����x�� = lim
n→


�
−





�n
����x��red�x,

1

n����x�dx

�29�

for any test function ��x�.
The limit of the sequence defined in Eq. �29� exists if we

require the function ��x� appearing in Eq. �28� to be of the form

��x� = � xm

F
exp� 1

x2 − 1
� �x� � 1

0 �x� � 1
� �30�

where m=natural number; and F=normalization constant and the
fulfillment of the inequality

� − 2� � 0 �31�

The limit of the sequence in Eq. �29� under the conditions
provided by Eqs. �30� and �31� defines the product of two Dirac’s
deltas as follows �Bagarello 1995, 2002�:

���x���x���,����x�� = �Aj��x����x�� � = 2�

0 � � 2�
� �32�

where

Aj =
1

�
�

−1

1
��x�

xj dx �33�

In this paper we adopt the first option provided by Eq. �32� as
the product of two Dirac’s deltas, which returns the properties of
a single Dirac’s delta if �=2� is assumed. Furthermore, in order
to guarantee the existence of the integral in Eq. �33�, it is assumed
j=2 and m=2 appearing in Eq. �30�, such that

A2 =
1

�
�

−1

1
��x�

x2 dx = 2.013 �34�

According to Eq. �32� for �=2�, the product of two Dirac’s
deltas both centered at x0 is a single Dirac’s delta and will be
adopted throughout the paper by means of the following formal
expression

��x − x0���x − x0� = A��x − x0� �35�

where the application of the Dirac’s delta to any test function is
implicitly assumed and where the constant A=A2=2.013 defined
by Eq. �34� is adopted.
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